

Random sample size for single and multiple hypothesis tests

Z-test proportions: two-samples one-tailed

Activities NGO Algorithm Audit

Advising on ethical issues that arise in concrete algorithmic practice through deliberative and diverse normative advice commissions, resulting in algoprudence

Implementing and testing technical tools to detect and mitigate bias, e.g., bias detection tool and synthetic data generation

Bringing together experts and knowledge to foster the collective learning process on the responsible use of algorithms, e.g., <u>Al Policy</u> Observatory and white papers

1. Single hypothesis test

2. Multiple hypothesis tests

3. References

Risk profile consitsting of single criterion

Theoretical answer

- > Goal: Determine minimum random sample size to measure statistically significant difference in unduly use rate between group A and group B
- > Data needed:
 - > p_A : proportion unduly group A, i.e. $p_A = \frac{N_{unduly, A}}{N_A}$, where N_A is the sample size of group A
 - > p_B : proportion unduly group B, i.e. $p_B = \frac{N_{unduly,B}}{N_B}$, where N_B is the sample size of group B
 - > Null and alternative hypothesis (one-sided):
 - H₀: p_A=p_B
 - H₁: p_A>p_B
 - > Significance level (a): probability of false positive (accepting H_0 while H_1 is true), e.g., 0.05 or 0.01
 - > Power (1 β): probability of true positive (rejecting H₀ while H₀ is indeed false), e.g., 0.8 or 0.9
 - > Ratio of sample size (k): ratio of sample size group A and sample size group B, i.e. $k = \frac{N_A}{N_B}$

Theoretical answer

> Formula to determine random sample size (n):

$$n = \left(\frac{p_A(1-p_A)}{k} + p_B(1-p_B)\right) \cdot \left(\frac{(z_{1-\alpha}+z_{1-\beta})}{(p_A-p_B)}\right)^2, \text{ where }$$

 $z_{1-\alpha}$:critical value of the normal distribution at the $1 - \alpha$ confidence level $z_{1-\beta}$:critical value of the normal distribution at the $1 - \beta$ confidence level

Example: Distance data DUO random sample 2014 (n=387)

unknown -Difference 50-500km --1.5% Difference: Difference 20-50km -1.7% 0.2% Difference: Difference: Difference 10-20km -1.7% Group A Difference:Difference:Difference:Difference 5-10km -1.0% 2.5% 4.2% 2.7% Difference: Difference: Difference: Difference Difference 2-5km -11.9% 14.4% 15.4% 16.1% 14.6% Difference Difference Difference: Difference:Difference:Difference 1-2km --16.1% -4.2% -3.2% -1.7% -1.5% Difference: Difference: Difference: Difference: Difference Difference: Difference 1m-1km -23.8% 7.7% 19.6% 20.6% 22.1% 23.8% 22.3%)ifference:Difference:Difference:Difference: Difference:Difference:Difference:Difference 0km --23.8% -4.2% -1.7% -1.5% -16.1% -3.2% 0km 1m-1km 1-2km 2-5km 5-10km 10-20km 20-50km 50-500km unknown Group B

Random sample 2014: Statistical significant difference in green (n=387) (restuls based on one-sided Z-test)

Example: Distance data DUO random sample 2014 (n=387)

Sample 2014	Size of group	# unduly grants	Percentage	
0km	8	0	0%	Group A
1m-1km	21	5	23,8%	$p_A = 14\%$ $N_A = 71$
1-2km	11	0	0%	
2-5km	31	5	16,1%	
5-10km	24	1	4,2%	Group B
10-20km	31	1	3,2%	$p_B = 1,3\%$
20-50km	58	1	1,7%	$N_B = 316$
50-500km	137	0	0%	
onbekend	66	1	1,5%	
Totaal	387	14	3,6%	

Table 9 – Overview of group size and unduly use percentage per distance category in the 2014 random sample (n=387).

Example: selection criterion 'distance to parent(s)' group A: ≤5km, group B: >5km

- > $p_A = 0.013$ (guestimation)
- > $p_B = 0.14$ (guestimation)
- > Hypothesis test:
 - $\begin{array}{l} H_0: p_A = p_B \\ H_1: p_A > p_B \end{array}$
- > Significance level (**a**): 0.05
- > Power **(1 β)**: 0.8
- > Ratio of sample size (k): $\frac{71}{316} = 0.225$ (based on random sample), $\frac{45.79k}{202.87k} = 0.226$ (based on full population sample)
- > Random sample size for group B: 69

--> Random sample size: 85

> Random sample size for group A: 0.225*69=16

Varying confidence level, power and percentual difference influences sample size

		p_A , p_B				
a	(1 - β)	1%, 2%	1%, 7%	1.3%, 14%	2%, 20%	
0.05	0.8	$N_A = 3.933, N_B = 885$ n=4.818	$N_A = 188, N_B = 43$ n=231	N _A =16, N _B =69 n=85	$N_A = 48, N_B = 11$ n=59	
	0.9	$N_A = 5.477, N_B = 1.226$ n=6.673	$N_A = 260, N_B = 59$ n=319	$N_A = 95, N_B = 22$ n=117	$N_A = 66, N_B = 15$ n=81	
0.01 -	0.8	$N_A = 6.383, N_B = 1.437$ n=7.820	$N_A = 305, N_B = 69$ n=374	$N_A = 111, N_B = 25$ n=136	$N_A = 77, N_B = 18$ n=95	
	0.9	$N_A = 8.279, N_B = 1.863$ n=10.142	$N_A = 395, N_B = 89$ n=484	$N_A = 144, N_B = 33$ n=177	$N_A = 100, N_B = 23$ n=123	

Note:

- > Higher confidence --> larger sample size
- > Measuring smaller difference --> larger sample size

1. Single hypothesis test

2. Multiple hypothesis tests

3. References

Risk profile consitsting of two criteria

Theoretical answer to compute random sample size for m=2 hypothesis tests

- > Goal: Determine minimum random sample size to measure statistically significant difference in unduly use rate between students living ≤5km (group A) and >5km away (group B), and students ≤22 years old (group C) and >22 years old (group D)
- > Data needed:
 - > p_A , p_B : proportion unduly group \leq 5km and proportion unduly group >5km
 - > p_C , p_D : proportion unduly group <22 years old and proportion unduly group >22 years old
 - > Two null and alternative hypothesis (one-sided):

$H_0: p_A = p_B$	$H_0: p_C = p_D$
$H_1: p_A > p_B$	$H_1: p_C > p_D$

- > Significance level (a): probability of false positive (accepting H_0 while H_1 is true), e.g., 0.05 or 0.01
- > Bonferroni correction for testing m=2 hypothesis: $\alpha_{adjusted} = \frac{\alpha}{2}$
- > Power (1 β): probability of true positive (rejecting H₀ while H₀ is indeed false), e.g., 0.8 or 0.9
- > Ratio of sample sizes (k₁ and k₂): ratio of group sample sizes, i.e. $k_1 = \frac{N_A}{N_B}$, $k_2 = \frac{N_C}{N_D}$

Algorithm Audit – Random sample size

Formula to compute sample size for m=2 hypothesis tests

> Formula to determine random sample size (n₁) to test first hypothesis test and random sample size (n₂) to test second hypothesis test:

$$n_{1} = \left(\frac{p_{A}(1-p_{A})}{k_{1}} + p_{B}(1-p_{B})\right) \cdot \left(\frac{\left(z_{1-\alpha_{adjusted}} + z_{1-\beta}\right)}{(p_{A}-p_{B})}\right)^{2},$$
$$n_{2} = \left(\frac{p_{C}(1-p_{C})}{k_{2}} + p_{D}(1-p_{D})\right) \cdot \left(\frac{\left(z_{1-\alpha_{adjusted}} + z_{1-\beta}\right)}{(p_{C}-p_{D})}\right)^{2},$$

where:

 $z_{1-\alpha_{adjusted}}$: critical value of the normal distribution at the $\alpha_{adjusted} = \frac{\alpha}{2}$ confidence level $z_{1-\beta}$: critical value of the normal distribution at the $1-\beta$ confidence level

Example: Age data DUO random sample 2014 (n=387)

Example: Age data DUO random sample 2014 (n=387)

Sample 2014	Size of group	# unduly grants	Percentage	Group C
15-18	24	0	0%	$p_C = 3,2\%$
19-20	115	1	0,9%	$N_C = 288$
21-22	149	8	5,4%	
23-24	62	3	4,8%	Group D
25-50	37	2	5,4%	$p_{\rm D} = 5.0\%$
Totaal	387	14	3,6%	$N_D = 99$

Table 7 – Overview of group size and unduly use percentage per age category in the random sample 2014 (n=387).

Example: testing m=2 hypotheses for distance ≤5km vs 5km and age ≤22 vs >22 years

- > $p_A = 0.013$, $p_B = 0.14$ (guestimation)
- > $p_C = 0.032, p_D = 0.05$ (guestimation)
- > Hypothesis test:
- > Significance level (**a**): 0.05/2=0.025
- > Power **(1 β)**: 0.8
- > Ratio of sample sizes: $k_1 = \frac{71}{316} = 0.225$ and $k_2 = \frac{288}{387} = 0.744$ (based on random sample)
- > Random sample size for group B: 69
- > Random sample size for group A: 0.225*69=16
- > Random sample size for group D: 2.160
- > Random sample size for group C: 0.744*2.160=1.607
- --> Random sample size: 85+3.767=3.872

Algorithm Audit – Random sample size

17

Generalizable to testing m hypotheses

1. Single hypothesis test

2. Multiple hypothesis tests

3. References

4. Code

References

- > <u>http://powerandsamplesize.com/Calculators/Compare-2-Proportions/2-Sample-1-Sided</u>
- > <u>https://stats.stackexchange.com/questions/581679/minimum-sample-size-calculations-for-two-sample-two-tailed-proportion-z-test</u>
- > <u>https://stats.stackexchange.com/questions/467595/how-do-you-calculate-sample-sizes-for-multiple-treatments?noredirect=1&lq=1</u>

1. Single hypothesis test

2. Multiple hypothesis tests

3. References

Python code

```
# Define the parameters
def sample_size(p, k, alpha, beta, m):
    pA = p[0]
    pB = p[1]
    kappa = k
    alpha = alpha
    beta = beta
    print("pA:", pA)
    print("pB:", pB)
    print("alpha:", alpha)
    print("beta:", beta)
    # Calculate the z-scores for the given alpha and beta
    z_alpha = stats.norm.ppf(1 - alpha/m)
    z_{beta} = stats.norm.ppf(1 - beta)
    # Calculate the sample size nB using the given formula
    nB = (pA * (1 - pA) / kappa + pB * (1 - pB)) * ((z_alpha + z_beta) / (pA - pB))**2
    # Round up nB to the nearest whole number
    nB ceiling = np.ceil(nB)
    nA_ceiling = np.ceil(kappa * nB)
    n = nA_ceiling + nB_ceiling
    # Print the ceiling value of nB
    print("Sample size in group B:", int(nB_ceiling))
    print("Sample size in group A:", int(nA_ceiling))
    print("Sample size needed:", int(n))
    return(n)
```


www.algorithmaudit.eu

info@algorithmaudit.eu

https://www.linkedin.com/company/algorithm-audit/

https://github.com/NGO-Algorithm-Audit

Stichting Algorithm Audit is bij de Kamer van Koophandel geregistreerd onder nummer 83979212