

Analysis Dutch Algorithm Register

Transparency in practice

Dutch Algorithm Register: from pinnacle of transparency to puzzle of paperwork

The aim is to foster trust...

Transparency: it should provide insight in algorithmic systems used by governments

Missing records: Many organisations have not yet published in the Registry, or their submissions are incomplete

Explainability: it aims to clarify how algorithms influence decision-making and what personal data are used

Uninformative: The information in the Registry is often poor and provides little meaningful insight

Verifiablility: enabling internal and external actors to check logic of algorithm

Incomplete: Key information is often missing. 53% of high-impact algorithms lack a registered impact assessment

1.245

registered algorithms and Al systems by 289 organisations

How to find the algorithms that matter?

The 1.245 registered algorithms are categorized on type and impact

	High-risk Al	High-impact algorithms	Other
Municipalities (777x)	2%	44%	54%
Executive branches and others (379x)	3%	58%	39%
Provinces (53x)	12%	28%	60%
Ministries (36x)	0%	28%	72%
Total (1.245x)	3%	47%	50%

Definition of different types of algorithms

High-risk AI system: AI systems under the AI Act which pose a significant risk of harm to health, safety or fundamental rights, according to i.a. Annex III risk categories

High-impact algorithm: Algorithms which have a legal or otherwise significant impact

Other algorithms: Algorithms published for other reasons, such as demystification

Some Dutch municipalities perform well, others need to catch up

Top 5 vs bottom 5 performers out of 20 largest Dutch municipalities

	Municipality	High-risk	High-impact	Other	Total
1.	Amsterdam	0	34	29	63
2.	Rotterdam	1	8	19	28
3.	The Hague	2	19	22	43
4.	Utrecht	0	45	0	45
5.	Eindhoven	0	3	0	3
6.	Groningen	0	6	9	15
9.	Breda	0	0	0	0
11.	Apeldoorn	0	0	2	2
18.	Den Bosch	1	0	0	1
19.	Zwolle	0	0	0	0

Sorted by population

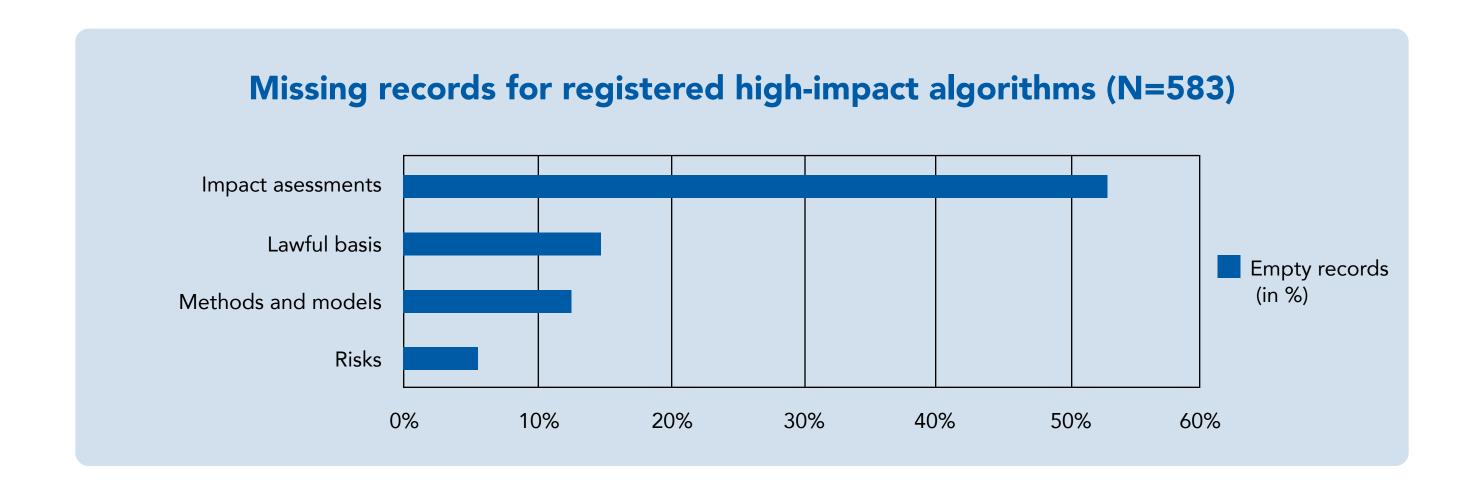
Quality over quantity; numbers don't capture it all

Having many records does not mean that they are well-completed

	Impact assessment		Lawful basis		Methods and models		Proportionality	
Amsterdam (63x)	54%		27%	1	63%		75%	
Rotterdam (28x)	82%		79%		100%		89%	
Utrecht (45x)	100%		16%		7%		100%	
Almere (12x)	8%		58%		83%		83%	
100% complete					Only a qu	arte	er of Amsterdar	m′ <u>s</u>
					ntain a legal ba			

Quality vs quantity: Algorithm Audit recommends to publish fewer highquality registries rather than a larger number of low-quality registries

The Register reveals lack of governance for high-impact algorithms


Key information is missing for many high-impact algorithms

53%

of registered high-impact algorithms (n=583) lack an impact assessment

14%

of all registered high-impact algorithms have no lawful basis provided for their use

The same Al systems receive different risk classifications across organizations

Same Al system, different risk category

Al system	Assigned risk category	Correct risk category
Facial recognition (Oribi) (21x)	Other (9x) High-risk (2x)	High-impact (10x)
Intelligent Traffic Lights (8x)	High-risk (3x)	Other (5x)
MONOcam (1x)	High-impact (1x)	High-risk (0x)

Inconsistency: The same facial recognition AI system from the same provider is identified differently by different organizations

Risk classification: In general, organizations often face challenges in accurately categorizing risk, frequently under- or overestimating the risk associated with algorithmic systems

Room for improvement: we're here to help

Three ways to improve the Algorithm Register

- i. Vertical standards: Develop technology-specific requirements such as accuracy specifications for facial recognition software – that can be requested during procurement and can be published in the Algorithm Register
- ii. Mandatory publication requirements: Require high-risk AI systems and high-impact algorithms to publish, at least, their legal basis and an identification of risks
- iii. Guidelines for complete and consistent classification: National guidelines are needed to ensure accurate and consistent identification and risk classification across organisations

Algorithm Audit is maintaining a free to use and <u>open source tool</u> that is helping organisations to comply with regulations for algorithms and Al

Building public knowledge for responsible AI

Join the discussion!

www.algorithmaudit.eu

www.linkedin.com/company/algorithm-audit

info@algorithmaudit.eu

www.github.com/NGO-Algorithm-Audit